首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1791篇
  免费   76篇
  国内免费   50篇
  2023年   15篇
  2022年   10篇
  2021年   26篇
  2020年   21篇
  2019年   28篇
  2018年   31篇
  2017年   20篇
  2016年   39篇
  2015年   51篇
  2014年   60篇
  2013年   84篇
  2012年   45篇
  2011年   64篇
  2010年   66篇
  2009年   105篇
  2008年   127篇
  2007年   134篇
  2006年   114篇
  2005年   114篇
  2004年   93篇
  2003年   77篇
  2002年   53篇
  2001年   36篇
  2000年   59篇
  1999年   44篇
  1998年   25篇
  1997年   28篇
  1996年   27篇
  1995年   26篇
  1994年   19篇
  1993年   26篇
  1992年   19篇
  1991年   22篇
  1990年   16篇
  1989年   8篇
  1988年   12篇
  1987年   16篇
  1986年   8篇
  1985年   11篇
  1984年   20篇
  1983年   21篇
  1982年   30篇
  1981年   16篇
  1980年   14篇
  1979年   17篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1972年   2篇
排序方式: 共有1917条查询结果,搜索用时 15 毫秒
41.
42.
Summary The time derivatives of prey and predator populations are assumed to satisfy a set of inequalities, instead of a precise differential equation, reflecting an uncertain environmental and/or lack of knowledge by the modeler. A system of differential equations is found whose solution gives the boundary of a persistent set, which is positive flow invariant for any system satisfying the inequalities. Conditions are given for the persistent set to be bounded away from both axes, which show that resonance effects cannot drive either predator or prey to extinction if that does not happen for an autonomous system satisfying the inequalities. In general predator-prey systems are more persistent when there is strong asymptotic stability, when there is correlation between prey and predator dynamics, when the effect of perturbations is density dependent, and are more persistent under perturbations of the prey than of the predator.  相似文献   
43.
Summary A model for the interactions of cortical neurons is derived and analyzed. It is shown that small amplitude spatially inhomogeneous standing oscillations can bifurcate from the rest state. In a periodic domain, traveling wave trains exist. Stability of these patterns is discussed in terms of biological parameters. Homoclinic and heteroclinic orbits are demonstrated for the space-clamped system.The research reported in this paper was supported in part by NIH GM2037  相似文献   
44.
Summary This article is concerned with the determination of kinetic parameters of the Calvin photosynthesis cycle which is described by seventeen nonlinear ordinary differential equations. It is shown that the task requires dynamic data for several sets of initial conditions. The numerical technique is based upon an algorithm for non-linear optimization and Gear's numerical integration scheme for stiff systems of differential equations. The sensitivity of the parameters to noise in the data is tested with a method adapted from Rosenbrook and Storey. A preliminary set of parameters has been obtained from a preliminary set of experimental data. The numerical methods are then tested with synthetic data derived from these parameters. The mathematical model and the results obtained in the simulation are used as an aid in designing new experiments.  相似文献   
45.
Ligaments undergo finite strain displaying hyperelastic behaviour as the initially tangled fibrils present straighten out, combined with viscoelastic behaviour (strain rate sensitivity). In the present study the anterior cruciate ligament of the human knee joint is modelled in three dimensions to gain an understanding of the stress distribution over the ligament due to motion imposed on the ends, determined from experimental studies. A three dimensional, finite strain material model of ligaments has recently been proposed by Pioletti in Ref. [2]. It is attractive as it separates out elastic stress from that due to the present strain rate and that due to the past history of deformation. However, it treats the ligament as isotropic and incompressible. While the second assumption is reasonable, the first is clearly untrue. In the present study an alternative model of the elastic behaviour due to Bonet and Burton (Ref. [4]) is generalized. Bonet and Burton consider finite strain with constant modulii for the fibres and for the matrix of a transversely isotropic composite. In the present work, the fibre modulus is first made to increase exponentially from zero with an invariant that provides a measure of the stretch in the fibre direction. At 12% strain in the fibre direction, a new reference state is then adopted, after which the material modulus is made constant, as in Bonet and Burton's model. The strain rate dependence can be added, either using Pioletti's isotropic approximation, or by making the effect depend on the strain rate in the fibre direction only.

A solid model of a ligament is constructed, based on experimentally measured sections, and the deformation predicted using explicit integration in time. This approach simplifies the coding of the material model, but has a limitation due to the detrimental effect on stability of integration of the substantial damping implied by the nonlinear dependence of stress on strain rate. At present, an artificially high density is being used to provide stability, while the dynamics are being removed from the solution using artificial viscosity. The result is a quasi-static solution incorporating the effect of strain rate. Alternate approaches to material modelling and integration are discussed, that may result in a better model.  相似文献   
46.
The human gut microbiota is transmitted from mother to infant through vaginal birth and breastfeeding. Bifidobacterium, a genus that dominates the infants’ gut, is adapted to breast milk in its ability to metabolize human milk oligosaccharides; it is regarded as a mutualist owing to its involvement in the development of the immune system. The composition of microbiota, including the abundance of Bifidobacteria, is highly variable between individuals and some microbial profiles are associated with diseases. However, whether and how birth and feeding practices contribute to such variation remains unclear. To understand how early events affect the establishment of microbiota, we develop a mathematical model of two types of Bifidobacteria and a generic compartment of commensal competitors. We show how early events affect competition between mutualists and commensals and microbe-host-immune interactions to cause long-term alterations in gut microbial profiles. Bifidobacteria associated with breast milk can trigger immune responses with lasting effects on the microbial community structure. Our model shows that, in response to a change in birth environment, competition alone can produce two distinct microbial profiles post-weaning. Adding immune regulation to our competition model allows for variations in microbial profiles in response to different feeding practices. This analysis highlights the importance of microbe–microbe and microbe–host interactions in shaping the gut populations following different birth and feeding modes.  相似文献   
47.
This work addresses the problem of prescribing proper boundary conditions at the artificial boundaries that separate the vascular district from the remaining part of the circulatory system. A multiscale (MS) approach is used where the Navier–Stokes equations for the district of interest are coupled to a non-linear system of ordinary differential equations which describe the circulatory system. This technique is applied to three 3D models of a carotid bifurcation with increasing stenosis resembling three phases of a plaque growth. The results of the MS simulations are compared to those obtained by two stand-alone models. The MS shows a great flexibility in numerically predicting the haemodynamic changes due to the presence of a stenosis. Nonetheless, the results are not significantly different from a stand-alone approach where flows derived by the MS without stenosis are imposed. This is a consequence of the dominant role played by the outside districts with respect to the stenosis resistance.  相似文献   
48.
In this study, we present an adaptive anisotropic finite element method (FEM) and demonstrate how computational efficiency can be increased when applying the method to the simulation of blood flow in the cardiovascular system. We use the SUPG formulation for the transient 3D incompressible Navier–Stokes equations which are discretised by linear finite elements for both the pressure and the velocity field.

Given the pulsatile nature of the flow in blood vessels we have pursued adaptivity based on the average flow over a cardiac cycle. Error indicators are derived to define an anisotropic mesh metric field. Mesh modification algorithms are used to anisotropically adapt the mesh according to the desired size field. We demonstrate the efficiency of the method by first applying it to pulsatile flow in a straight cylindrical vessel and then to a porcine aorta with a stenosis bypassed by a graft. We demonstrate that the use of an anisotropic adaptive FEM can result in an order of magnitude reduction in computing time with no loss of accuracy compared to analyses obtained with uniform meshes.  相似文献   
49.
A model for the ergometer rowing exercise is presented in this paper. From the quantitative observations of a particular trajectory (motion), the model is used to determine the moment of the forces produced by the muscles about each joint. These forces are evaluated according to the continuous system of equations of motion. An inverse dynamics analysis is performed in order to predict the joint torques developed by the muscles during the execution of the task. An elementary multibody mechanical system is used as an example to discuss the assumptions and procedures adopted.  相似文献   
50.

The electrical activity of the heart may be modeled with a system of partial differential equations (PDEs) known as the bidomain model. Computer simulations based on these equations may become a helpful tool to understand the relationship between changes in the electrical field and various heart diseases. Because of the rapid variations in the electrical field, sufficiently accurate simulations require a fine-scale discretization of the equations. For realistic geometries this leads to a large number of grid points and consequently large linear systems to be solved for each time step. In this paper, we present a fully coupled discretization of the bidomain model, leading to a block structured linear system. We take advantage of the block structure to construct an efficient preconditioner for the linear system, by combining multigrid with an operator splitting technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号